Studying Fake News Spreading, Polarisation Dynamics, and Manipulation: A Study of Language on Social Networks

Authors

  • Rehana MS Linguistics Student, COMSATS University Islamabad, Vehari, Pakistan.
  • Dr. Ali Ahmad Associate Professor, Humanities, COMSATS University Islamabad, Vehari Campus, Punjab, Pakistan.

DOI:

https://doi.org/10.62997/rl.2025.41061

Keywords:

Fake News, Polarisation Dynamics, Manipulation, Language Use, Social Networks, Fairclough's Three-Dimensional Model, Digital Information Dissemination, Linguistic Scrutiny, Ideological Divides

Abstract

With the propagation of fake news and its effect on societal polarisation, the digital era and social networks offer the opportunity to share information rapidly and widely. The study uses Fairclough three dimensional language model in the broader context of social networks, to understand how fake news spreads, how polarisation dynamics work and how it manipulates people. By textually, discursively, and socially analysing the propagation of digital information, the research explains how language exerts or is exerted upon by digital information propagation. The analysis of fake news reveals effective practices of favorable dissemination of insidious manipulation, weighed by linguistic scrutiny. In addition to focusing on language in the study of polarisation dynamics, the study urges us to understand the function of language to minimise polarisation, pointing to the necessity of understanding discursive practices to mitigate polarisation. The research examines how language choices on social networks enhance or shape public opinion and perceptions by having manipulative features. Fairclough's model helps as a strong framework in uncovering the power of language dynamics in cultivating a more extensive comprehension of manipulating mechanisms. The study's findings revealed the persuasive linguistic choices in fake news employed to mislead the readers. The study offers a valuable guidance for scholars and policymakers to cope with the negative impact of these phenomena on our interwoven world.

Author Biography

  • Rehana, MS Linguistics Student, COMSATS University Islamabad, Vehari, Pakistan.

    Corresponding Author: [email protected]

References

Aïmeur, E., Hage, H., & Amri, S. (2018, December). The scourge of online deception in social networks. In 2018 International Conference on Computational Science and Computational Intelligence (CSCI) (pp. 1266-1271). IEEE. https://doi.org/10.1109/CSCI46756.2018.00244

Bessi, A., & Ferrara, E. (2016). Social bots distort the 2016 US Presidential election online discussion. First monday, 21(11-7). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2982233

Edgerly, S., Mourão, R. R., Thorson, E., & Tham, S. M. (2020). When do audiences verify? How perceptions about message and source influence audience verification of news headlines. Journalism & Mass Communication Quarterly, 97(1), 52-71. https://doi.org/10.1177/1077699019864680

Ferrara, E., Varol, O., Davis, C., Menczer, F., & Flammini, A. (2016). The rise of social bots. Communications of the ACM, 59(7), 96-104. https://dl.acm.org/doi/abs/10.1145/2818717

Friggeri, A., Adamic, L., Eckles, D., & Cheng, J. (2014, May). Rumor cascades. In proceedings of the international AAAI conference on web and social media (Vol. 8, No. 1, pp. 101-110).

García, S. A., Gómez García, G., Sanz Prieto, M., Moreno Guerrero, A. J., & Rodríguez Jiménez, C. (2020). The impact of the term fake news on the scientific community. Scientific performance and mapping in a web of science. Social Sciences, 9(5), 73. https://doi.org/10.3390/socsci9050073

Hango, D. (2014). University graduates with lower levels of literacy and numeracy skills. Statistics Canada= Statistique Canada.

Jwa, H., Oh, D., Park, K., Kang, J. M., & Lim, H. (2019). exbake: Automatic fake news detection model based on bidirectional encoder representations from transformers (bert). Applied Sciences, 9(19), 4062. https://doi.org/10.3390/app9194062

Kumar, S., & Shah, N. (2018). False information on web and social media: A survey. arXiv preprint arXiv:1804.08559. https://doi.org/10.48550/arXiv.1804.08559

Liu, Y., & Wu, Y. F. (2018, April). Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks. In Proceedings of the AAAI conference on artificial intelligence (Vol. 32, No. 1). https://doi.org/10.1609/aaai.v32i1.11268

Mottola, S. (2020). Las fake news como fenómeno social. Análisis lingüístico y poder persuasivo de bulos en italiano y español. Discurso & Sociedad, (3), 683-706. http://www.dissoc.org/en/ediciones/v14n03/DS14(3)Mottola.pdf

Newman, M. L., Pennebaker, J. W., Berry, D. S., & Richards, J. M. (2003). Lying words: Predicting deception from linguistic styles. Personality and social psychology bulletin, 29(5), 665-675. https://doi.org/10.1177/0146167203029005010

Pennebaker, J. W., & King, L. A. (1999). Linguistic styles: language use as an individual difference. Journal of personality and social psychology, 77(6), 1296. https://psycnet.apa.org/doi/10.1037/0022-3514.77.6.1296

Pennebaker, J. W., Mehl, M. R., & Niederhoffer, K. G. (2003). Psychological aspects of natural language use: Our words, our selves. Annual review of psychology, 54(1), 547-577. https://doi.org/10.1146/annurev.psych.54.101601.145041

Qian, F., Gong, C., Sharma, K., & Liu, Y. (2018, July). Neural User Response Generator: Fake News Detection with Collective User Intelligence. In IJCAI (Vol. 18, pp. 3834-3840). https://www.ijcai.org/proceedings/2018/0533.pdf

Said-Hung, E., Merino-Arribas, A., & Martínez-Torres, J. (2021). Evolución del debate académico en la Web of Science y Scopus sobre unfaking news (2014-2019). Estudios sobre el Mensaje Periodístico, 27(3), 961-971. https://dx.doi.org/10.5209/esmp.71031

Sharma, K., Qian, F., Jiang, H., Ruchansky, N., Zhang, M., & Liu, Y. (2019). Combating fake news: A survey on identification and mitigation techniques. ACM transactions on intelligent systems and technology (TIST), 10(3), 1-42. https://doi.org/10.1145/3305260

Shi, P., Zhang, Z., & Choo, K. K. R. (2019). Detecting malicious social bots based on clickstream sequences. IEEE Access, 7, 28855-28862. https://doi.org/10.1109/ACCESS.2019.2901864

Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2017). Fake news detection on social media: A data mining perspective. ACM SIGKDD explorations newsletter, 19(1), 22-36. https://doi.org/10.1145/3137597.3137600

Shu, K., Wang, S., & Liu, H. (2018, April). Understanding user profiles on social media for fake news detection. In 2018 IEEE conference on multimedia information processing and retrieval (MIPR) (pp. 430-435). IEEE. https://doi.org/10.1109/MIPR.2018.00092

Silverman, C. (2015). Lies, damn lies and viral content. https://doi.org/10.1109/MIPR.2018.00092

Zhou, L., & Zhang, D. (2008). Following linguistic footprints: Automatic deception detection in online communication. Communications of the ACM, 51(9), 119-122. https://dl.acm.org/doi/fullHtml/10.1145/1378727.1389972

Downloads

Published

2025-03-30

Issue

Section

Articles

How to Cite

Rehana, & Ahmad, A. (2025). Studying Fake News Spreading, Polarisation Dynamics, and Manipulation: A Study of Language on Social Networks. Regional Lens, 4(1), 188-201. https://doi.org/10.62997/rl.2025.41061